Synthesis, spectral characterization of VOPcF16 and its application in organic thin film transistors using *p*-6p as inducing layer

YINGLI SUN^{a,c}, XINLONG HU^a, XIANGGAO LI^b, SHIRONG WANG^b, FENG MA^{a,*}

^aSchool of Chemistry and chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China

^bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China ^cTianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China

A stable n-type semiconductor material, VOPcF₁₆, was synthesized and characterized by infrared (IR), UV-vis and fluorescence spectra. VOPcF₁₆ showed a monomer characteristic in DCB while exhibited an aggregation property in THF. The VOPcF₁₆/*p*-6p (VOPcF₁₆ on *p*-6p) organic thin film transistors (OTFTs) using VOPcF₁₆ as an active layer and *p*-6p as an inducing layer was fabricated by the physical vapor deposition technique. Charge carrier field-effect mobility (μ) and threshold voltage (*V_T*) of the VOPcF₁₆/*p*-6p OTFTs were 4.5×10⁻⁴ cm²/V s and 23 V, respectively.

(Received February 5, 2016; accepted April 5, 2016)

Keywords: Organic semiconductors, Thin film transistors, Aggregation effects, Thermal properties

1. Introduction

Metal hexadecafluorophthalocyanine, such as $CuPcF_{16}$, is currently receiving a great deal of attention as one of the few molecules that exhibit air-stable n-channel semiconducting behavior [1]. Such properties result in a number of studies aiming at different applications like organic solar cell, OTFTs, gas sensors and rectifying junction [2–4].

Synthesis and characterization of copper hexadecafluorophthalocyanine were reported in Ref. [5]. Schlettwein et al. consider a possibility of epitaxial growth of ZnPcF₁₆ films on NaCl, KCl and KBr surfaces by organic molecular beam deposition (OMBD) technique [5, 6]. It was shown that $ZnPcF_{16}$ film structure depends not only on substrate materials but also on film thickness and substrate temperature [5, 7]. The electrical properties of ZnPcF₁₆ films were investigated and n-type of conductivity was confirmed in Ref. [8]. Employing para-hexaphenyl (p-6p, shown in Fig. 1) as an inducing layer is an effective and a simple method to fabricate the high performance of OTFTs for practical application [9, 101.

In this paper, vanadyl hexadecafluorophthalocyanine (VOPcF₁₆, shown in Fig. 1) was synthesized and its spectral properties were studied. Especially we employed p-6p as an inducing layer to fabricate VOPcF₁₆-based thin film transistors using the vapor deposition techniques and measured their electrical characteristics.

Fig. 1. Molecular structure of (a) $VOPcF_{16}$ and (b) p-6p.

2. Experiment

For the synthesis of VOPcF₁₆, sublimed tetrafluorophthalonitrie and Vanadium pentoxide in an equimolar 4:1 ratio were intensively mixed in a mortar. The mixture was filled in a glass vessel, three times flushed with nitrogen and vacuum and finally the glass ampoule was sealed under vacuum $(1.33 \times 10^{-3} \text{ Pa})$. After heating for 8 h at 240 °C the blue product was isolated and washed with ethanol and acetone to remove the soluble organic admixture. The resulting purple deposit with yield of 14.9% after purification by concentrated sulfuric acid was identified as vanadyl hexadecafluorophthalocyanine. IR (KBr) 1630, 1530, 752, 1147, and 839 cm⁻¹. MS (TOF, Methanol) m/e 966.685. The VOPcF₁₆/p-6p OTFTs configuration is given in Fig. 2. The device was prepared with an air-stable n-type semiconductor VOPcF₁₆ and a rod-like conjugated oligomer p-6p molecule. VOPcF₁₆ and p-6p were purified twice by thermal gradient sublimation prior to processing. A 6nm thick film of p-6p was first deposited on a SiO₂ substrate at 180 °C, and then a 30 nm thick layer of $VOPcF_{16}$ was deposited on top of the *p*-6p surface by vacuum deposition.

All organic films were deposited in vacuum $(10^{-4}-10^{-5}$ Pa) at a rate of 0.50 nm min⁻¹. Finally, Au source and drain electrodes with 30 nm thickness were prepared by thermal deposition with a shadow mask defining channel width (*W*) and length (*L*) of 6000 µm and 200 µm, respectively. The output and transfer characteristics of the transistors were measured with two Keithley 236 source-measurement units under ambient conditions at room temperature.

Fig. 2. The device configurations of $VOPcF_{16}/p$ -6p thin film transistors.

3. Results and discussion

3.1. UV-vis and fluorescence spectra

Fig. 3 shows the UV-vis absorption spectra of 5×10^{-5} mol L⁻¹ VOPcF₁₆ solutions in 1, 2-dichlorobenzene (DCB), tetrahydrofuran (THF), pyridine and dimethylformamide (DMF), respectively. The absorption spectra were measured by an EVOLUTION300 spectrometer. Absorption maxima for Q band are seen at 710 nm with shoulders at 644 and 679 nm for VOPcF₁₆ dissolved in DCB and at 690, 645 and 643 nm for VOPcF₁₆ solution in

THF, Pyridine and DMF. The absence of aggregation effects indicates monomer behavior of VOPcF₁₆ in DCB [11]. And with the increase of the polarity of solvents, the ground state is more stable than the excited state in the π - π * transition system, so the transition energy gap increases, which will induce the Q band shift to a shorter wave length to some extent. The spectrum of VOPcF₁₆ dissolved in THF differs from the spectrums of this compound in DCB solvents since it shows two strong absorption peaks at 640 and 690 nm. It demonstrates that VOPcF₁₆ aggregates in THF solvent according to reference literature [11].

Fig. 3. The UV-vis spectra of $VOPcF_{16}$ in different solvents.

The fluorescence spectrum of $VOPcF_{16}$ in DCB was measured on a CARY Eclipse fluorescence spectrophotometer, as shown in Fig. 4. The emission maxima are observed at 689 nm corresponding to the red light emission.

Fig. 4. Fluorescence emission spectrum of VOPcF₁₆ in DCB

3.2. Thermal properties

The thermal properties of VOPcF₁₆ were characterized by thermogravimetric analysis (TGA) at a heating rate of 10 °C min⁻¹ under nitrogen atmosphere. The TGA curve was measured by a TG 209 F3 thermo gravimetric analyzer. VOPcF₁₆ is relative stable and the mass loss is less than 10% below 100 °C. TGA measurements indicate that VOPcF₁₆ compound has high decomposition temperature of 467 °C (Td, correspond to a 10% mass loss, Fig. 5). VOPcF₁₆ exhibits excellent thermal stability and so its semiconductor thin film can be prepared by thermal deposition technique.

Fig. 5. TGA curve of VOPcF₁₆

3.3. Current-voltage characteristics

Typical output characteristic curves of the VOPcF₁₆/*p*-6p OTFTs are shown in Fig. 6 at different gate-source voltages (V_G) from 0 to 50 V. The positive voltage signals imply an electron-accumulated process in these OTFTs. With the increase of V_{DS} , the linear region and the saturation region can be observed. For lower V_{DS} from 0 to 10 V, I_{DS} is almost linearly increased with increasing V_{DS} . In contrast, for higher V_{DS} above 15 V, I_{DS} tends to saturate.

Fig. 7 shows the typical transfer characteristics of the VOPcF₁₆/*p*-6p OTFTs with different gate voltages at a fixed V_{DS} of 50 V. The field effect mobility was extracted from Fig. 7 in the saturation region ($V \ge (V_{GS} - V_T)$) based on

$$I_{DS} = \frac{W}{2L} \mu C_i (V_{GS} - V_T)^2$$
 (1)

Where I_{DS} is the drain-source current, W and L are the width and length of the channel, respectively, μ is the field-effect mobility, V_{GS} is the gate voltage and V_T is the threshold Voltage. The capacitance per unit area of the insulator (*Ci*) is 8 nF/cm². When a positive I_{DS} is observed upon the application of positive V_{GS} and V_{DS} , the semiconductor is n-type since the electrons are mobile.

According to the electrical properties, n-type conductivity of the VOPcF₁₆ semiconductor material was confirmed. The field effect mobility of 4.5×10^{-4} cm²/V s and the threshold Voltage of 23 V were extracted from the saturation region in Fig. 7.

Fig. 6. Output characteristics of VOPcF₁₆/p-6p OTFTs

Fig. 7. Transfer characteristics of VOPcF₁₆/p-6p OTFTs at a fixed V_{DS} (50 V)

4. Conclusion

In summary, an n-type semiconductor material, $VOPcF_{16}$, was synthesized and characterized by infrared (IR), MS, UV-vis and fluorescence spectra. The $VOPcF_{16}$ -based OTFTs was fabricated by the physical vapor deposition technique and measured by Keithley 236 source units. The measurement results show the $VOPcF_{16}$ material having n type characteristics of conductivity.

Acknowledgements

The authors are grateful to Donghang Yan research group in Changchun Institute of Applied Chemistry of Chinese Academy of Sciences for support of devices' fabrication. The work has been partially supported by National Natural Science Foundation of China (no. 21401138), High School Science and Technology and Technology Fund Planning Project of Tianjin (no. 20130508) and National Training Program of Innovation and Entrepreneurship for Undergraduates (no. x2014018).

References

- B. Tamara, P. Vladimir, H. Aseel, Surf. Sci. 602, 2368 (2008).
- [2] S. Tang, C. Shao, Y. Liu, S. Li, R. Mu, J. Phys. Chem. Solids 68, 2337 (2007).
- [3] R. C. Cherian, C. S. Menon, J. Phys. Chem. Solids 69, 2858 (2008).
- [4] J. Shi, H. Wang, D. Song, H. Tian, Y. Geng, D. Yan, Adv. Funct. Mater. 17, 397 (2007).

- [5] E. Kol'tsov, T. Basova, P. Semyannikov, I. Igumenov, Mater. Chem. Phys. 86, 222 (2004).
- [6] D. Schlettwein, K. Hesse, H. Tada, S. Mashiko, U. Storm, J. Binder, Chem. Mater. 12, 989 (2000).
- [7] D. Schlettwein, H. Graaf, J.-P. Meyer, T. Oekermann, N. I. Jaeger, J. Phys. Chem. B 103, 3078 (1999).
- [8] S. Hiller, D. Schlettwein, N. R. Armstrong, D. Wöhrle, J. Mater. Chem. 8, 945 (1998).
- [9] F. Ma, S. R. Wang, X. G. Li, D. Yan, Chin. Phys. Lett. 28, 118501 (2011).
- [10] Y. Sun, S. Wang, X. Li, F. Ma, Optoelectron. Adv. Mat. 9, 1194 (2015).
- [11] M. Handa, A. Suzuki, S. Shoji, K. Kasuga, K. Sogabe, Inorg. Chim. Acta 230, 41 (1995).

^{*}Corresponding author: mafontune @sina.com.cn